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A hybrid magnetohydrodynamic-gyro-kinetic model is developed for the stability
analysis of global Alfvén waves in the presence of energetic ions. The ideal MHD
model is extended to take into account the perturbed parallel electric field and the
finite Larmor radius which are relevant for high temperature plasmas. The gyrokinetic
formulation fully includes the tokamak geometry and the effects of non-standard
orbits of energetic ions, which experience large excursions away from the magnetic
flux surfaces. The algorithms implemented in the CASTOR-K code are presented
together with tests of the numerical accuracy. The orbit integration algorithms are
optimized. An efficient algorithm is developed for evaluation of the wave-particle
energy exchange expressed by the quadratic formδWhot. c© 1999 EURATOM
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I. INTRODUCTION

The excitation of kinetic Alfvén waves by resonant interaction with energetic ions can
cause loss of confinement of the fast ions in tokamaks with intense auxiliary heating or in
a tokamak fusion reactor [44].

The tokamak geometry yields coupling between different poloidal harmonics of the
Alfv én wave, which breaks up the shear Alfv´en continuous spectrum and, furthermore,
creates discrete global toroidicity-induced shear Alfv´en eigenmodes (TAE) with frequencies
inside the continuum gaps [7]. In a thermo-nuclear reactor the interaction of alpha particles
with the TAEs can lead to instabilities [17]. Unstable TAEs during neutral beam injection
were first observed in theTFTR tokamak [50].

Detailed quantitative predictions are required for the accurate analysis of JET D-T dis-
charges and for the design of ITER or other reactor relevant devices. This is beyond the
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capability of analytical treatment as done by Kerneret al. [30] and Fu and Van Dam [18]. The
assessment of the stability of TAEs and kinetic toroidicity-induced eigenmodes (KTAEs)
in a fusion reactor needs to be based on realistic plasma equilibria, realistic TAE wave
fields, and realistic distribution functions of the energetic ions including finite orbit widths.
These requirements prompt the development of a general model which includes all these
effects in a self-consistent manner. The influence of the plasma geometry on the TAE and
KTAE eigenfunctions is important in analyzing low toroidal mode numbers, where the
wavelength is comparable with the plasma dimensions. In particular, toroidal equilibria
with non-circular plasma shapes must be considered. In addition, a toroidal model which
includes bulk ion finite Larmor radius corrections is required in order to compute the KTAE
spectrum. As pointed out by Mett and Mahajan [35], the KTAEs become important in study-
ing the high temperature plasmas characteristic of the present large fusion experiments. The
normal-mode MHD code CASTOR [31] has been extended for this purpose. The interaction
between the TAE and KTAE wave fields with the energetic particle population has to take
into account the finite orbit widths of the high energy ions. The large excursions away from
the magnetic flux surfaces experienced by the high energy ions are significant compared
with the widths of the relevant TAE and KTAEs. The interaction between the Alfv´en waves
propagating along the field lines and the energetic ions is significantly reduced due to finite
particle orbit effects. In our model, the contribution of large orbits, such as non-standard
particle orbits, is included in the stability analysis of both the TAE and KTAE modes using
the formalism developed in [42]. Thus, the radial extent of the eigenmode and the radial
excursions away from the flux surfaces are computed consistently in toroidal plasmas. This
is crucial for the accurate calculation of the energy exchange between the particles and the
high-n KTAEs and core localized TAEs. The expressions required for the analysis of JET
D-T plasmas and for ITER predictions are derived self-consistently and the corresponding
algorithms are developed and programed. Expressions for the particle orbits and orbit topol-
ogy in straight field line coordinates are obtained. The numerical evaluation of the orbits
requires a dedicated algorithm in order to resolve accurately the magnetic axis and the bound-
aries between different orbit topological regions (e.g., like the trapping-passing boundary).
The procedure developed conserves the motion invariants, namely, energy, toroidal canoni-
cal momentum, and magnetic momentum, independently of the accuracy of the equilibrium
representation. The numerical evaluation of the quadratic formδWhot leads to a six dimen-
sional phase-space integration. The six dimensional phase-space is described using the
following variables: energy, magnetic momentum, poloidal angle, and cyclotronic phase,
together with the toroidal canonical momentum and toroidal angle. Both numerical and
analytical methods are employed in each step of the integration. The final integration step
with respect to magnetic momentum and toroidal canonical momentum is performed nu-
merically using a two dimensional adaptive scheme. The procedure works in two phases.
At first, a rectangular mesh is constructed evaluating the function to be integrated at each
point. Thus, a first estimate of the integral is obtained. Second, a refinement criterion se-
lects the area where accumulation points are required for improvement in the accuracy of
the integration. This procedure is repeated until a predefined accuracy of the integration is
achieved. This numerical procedure is implemented in the new code CASTOR-K.

The paper is organized as follows: In Section II, a general formulation for the study of the
excitation of Alfvén eigenmodes by energetic ions in tokamaks is derived. A quadratic form
δWhot is constructed which measures the effect of the energetic particles on the stability of
global Alfvén modes. The emphasis is placed on the importance of the finite excursions of
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the energetic particles away from the flux surfaces leading to a detailed description of the
particle orbits. Therefore, the equations of motion are formulated in a specific flux coordinate
system, leading to a complete characterization of the orbit topology of high energy ions.
In Section III, a group of numerical codes is presented. The introduction of a generalized
form for the plasma resistivity in the linear resistive MHD code CASTOR is described. The
numerical evaluation of the quadratic formδWhot, which represents the energy exchange
between the Alfv´en eigenmodes and the energetic particles, is performed by the CASTOR-K
code. The different steps of the integration procedure are presented in detail. Appropriate
numerical algorithms for the large scale numerical evaluation are developed and tested.
Conclusions are contained in Section IV. Details of the particle motion in straight field line
coordinates are given in Appendixes 1 and 2. Appendix 3 is devoted to the accuracy of the
field line representation.

II. THE MODEL

The stability analysis of a plasma configuration is performed by means of an hybrid
model. The fluid part of the model solves the linearized resitive MHD equations,

ωδρ = −∇ · (ρ0δEv) (II.1)

ωρ0δEv = −∇ · (ρ0δT+ δρT0)+ (∇ × EB0)× (∇ × δ EA)− EB0× (∇ × ∇ × δ EA) (II.2)

ωρ0δP = −ρ0δEv · ∇ p0− (γp − 1)p0∇ · δEv+ 2η(γ − 1)(∇ × EB0) · (∇ ×∇ × δ EA) (II.3)

ω δ EA = − EB0× δEv − η∇ × ∇ × δ EA, (II.4)

whereδρ represents the plasma density perturbation,δEv the perturbed fluid velocity,δP
the perturbed pressure,δ EA the perturbed vector potential,η the plasma resistivity,γp the
adiabatic plasma compressibility constant,p0 the equilibrium plasma pressure,B0 the equi-
librium magnetic field, andω the eigenvalue.

The gyro-kinetic part includes the interaction of the energetic ions with the MHD wave
using a perturbative approach. The evolution of the particle distribution functionf p in the
presence of electromagnetic fields is described by the collisionless Vlasov equation. Using
the position of the guiding centerER, the parallel velocityv‖, the perpendicular velocity, and
the gyro-angleα as variables the Vlasov equation has the form

∂ f p

∂t
+ ĖR · ∇ f p + v̇‖ ∂ f p

∂v‖
+ v̇⊥ ∂ f p

∂v⊥
+ α̇ ∂ f p

∂α
= 0. (II.5)

In the usual gyro-kinetic approximation, where the cyclotronic motion of the particle around
the magnetic field line is averaged in time, the dimensions of the system are reduced from
six to five. This allows the study of time scales which are large compared to the cyclotronic
motion, thus the fast varying terṁα(∂ f p/∂α) is eliminated in the Vlasov equation by
the averaging procedure. The solution of the time dependent Vlasov equation is obtained
perturbatively. The zeroth order solution, the time independent solution, is obtained for a
distribution of particles in a time independent electromagnetic field(E0, B0) in the form of
the single particle constants of motion. A steady-state distribution of particles in a toroidally
symmetric magnetic field is given by a function of energyE, canonical toroidal momentum
Pφ , and the magnetic momentumµ. The dependence onσ =∈ {−1, 1} is due to the fact
that for a given(E, Pφ, µ) there can exist zero, one, or two orbits. In the case where two
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orbits exist, the sign ofσ will distinguish these two orbits. In the case of large non-standard
orbits,σ can be chosen as the time derivative of the toroidal angleσ = sign(φ̇). For orbits
with a very small excursion from the poloidal flux surfaces,σ can also be identified with
the sign ofv‖ or θ̇ . In the presence of a perturbed time dependent electromagnetic field,
(E(t), B(t))= (E0, B0) + (E1(t), B1(t)), the corresponding linear perturbed distribution
function f1 (i.e., f p= F0+ f1) is obtained from the linearized perturbed Vlasov equation

d f1
dt
= −v̇(1)‖ ∂F0

∂v‖
− v̇(1)⊥ ∂F0

∂v⊥
. (II.6)

Therefore, the total perturbed distribution function is

f1 = 8(1) ∂F0

∂E
+ Pφ

(1) ∂F0

∂Pφ
− µB(1)

B
∂F0

∂µ
+ h1, (II.7)

dh1

dt
= ∂F0

∂E
∂L
∂t

(1)
− ∂F0

∂Pφ
∂L
∂φ

(1)
, (II.8)

where the linearized perturbed LagrangianL(1) of the unperturbed particle motion up to
first order inO( 1

Ä
) is given by

L(1) = Ze

(
EA(1) + 1

Ä
v‖Eb(1)

)
· ĖR−8(1) − µB(1). (II.9)

ER is the particle position,v‖ is the particle velocity parallel to the magnetic field,EA(1) is the
perturbed vector potential,8(1) is the perturbed electrostatic potential, andµ is the particle
magnetic moment.

Expressions (II.7)–(II.8) indicate that the total perturbed distribution function can be
expressed in terms of the sum of the non-adiabatic parth1 and the adiabatic contribution.
The fact that the orbit motion is periodic is used in the integration of Eq. (II.8).

In this analysis the plasma is described by two classes of particles. The low energy particles
which contain most of the plasma pressure are described as a conducting magnetized fluid,
i.e., by the MHD model, while the energetic particles have to be treated by a gyro-kinetic
approach. The plasma dispersion relation in the ideal MHD framework can be written in
the self-adjoint quadratic form

ω2Ek = δWMHD, (II.10)

whereEk is the kinetic energy of the perturbation andδWMHD is the potential energy. With
the inclusion of the fast particles the system is no longer self-adjoint. But in the case where
the contribution of the hot particles is smallδWHot¿ δWMHD, the problem can be treated per-
turbatively. In zeroth order, the normal mode problem is solved in the ideal MHD framework
as a generalized eigenvalue problem. The first order correction to the eigenvalue, due to the
presence of the additional supra-thermal particle population, is computed using the eigen-
vectors obtained for each MHD eigenvalue. This first order approximation neglects the fast
particle contribution to the eigenfunction but gives the leading order estimate of the growth
rate of the MHD waveωi . Therefore, the growth rate of a marginally stable wave is given by

(ωr + iωi )
2Ek = δWMHD + δWhot, (II.11)

γ

ω
= ωi

ωr
= Im[δWhot]

2ω2
r Ek

. (II.12)
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It is required to compute Im[δWhot] for a given fast particle distributionF0. δWhot can be
obtained from the perturbed distributionf1.

Since only the non-adiabatic part off1 can give an imaginary contribution to the dispersion
function a quadratic form including a supra-thermal particle distribution is obtained [42],

δWhot = − 2π2

Zem2

∑
σ

∫
d Pφ d E dµ

∞∑
p̃=−∞

τb(ω − nω∗)
∂F
∂E

|Yp̃|2
ω + nωD + (nq+ p̃)ωb

.

(II.13)

The perturbed Lagrangian is bounce averaged over the particle orbits and expanded in
Fourier harmonics of the periodic particle motion

L (1) = L̂(1)e−inφ(τ), (II.14)

with n the toroidal wave number. The Fourier coefficients are defined as

Yp̃ =
∮

dτ

τb
L̃(1)ei p̃ωbτ . (II.15)

The denominator in theδWhot expression vanishes if

0(E) = ω + nωD + (nq+ p̃)ωb = 0; (II.16)

this implies that the particle is in resonance with the wave. Taking into account the singu-
larities of the integrand, the integral has to be performed over the phase space. The term
proportional toω represents the free energy due to the gradients in velocity space, causing
the Landau damping, while the term proportional tonω∗ represents the free energy available
due to the spatial gradients in the distribution function

ω∗ = ∂F/∂Pφ
∂F/∂E

. (II.17)

In the evaluation of the growth rate it is necessary to compute the imaginary part ofδWhot.
Since only the poles in the particle wave response can give an imaginary contribution to
δWhot, the three, dimensional integral is reduced to two dimensions by integrating along
the resonant condition0(E) = 0. In the evaluation of the growth rate theδWhot quadratic
form is reduced to

δWhot = − 2π2

Äm2

∫
d Pφ dµ

∑
σ

∞∑
p̃=−∞

τb(ω − nω∗)
∂F
∂E

2π i |Yp̃|2
|∂0/∂E| . (II.18)

II.1. Particle Orbits and Orbit Topology

The gyro-averaged guiding centre equations of motion are obtained from a variational
principle where the Lagrangian is

L = Ze

(
EA+ 1

Ä
v‖ EB

)
· ĖR+ 1

Ä
µB2̇− H, (II.1.1)

and

H = 1

2
mv2
‖ + µB+ Ze8. (II.1.2)
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ER is the particle position,v‖ is the particle velocity parallel to the magnetic field,EA is the
vector potential,8 is the electrostatic potential,µ is the particle magnetic moment,2 is the
gyro-angle, andÄ the gyro-frequency. From the Euler–Lagrange equations the following
guiding center equations of motion are obtained [33],

(
B+ v‖

Ä
EB · (∇ × Eb)

)
ĖR = v‖ EB+

v2
‖B
Ä
∇ × Eb+ µB

mÄ
Eb×∇B, (II.1.3)

(
B+ v‖

Ä
EB · (∇ × Eb)

)
v̇‖ = −µ

m
EB · ∇B− v‖µB

mÄ
(∇ × Eb) · ∇B. (II.1.4)

These equations describe the guiding centre particle motion up to first order in the Larmor
radius but the energyE and canonical angular momentumPφ are exactly conserved in time
independent and toroidally symmetric magnetic fields

E = 1

2
mv2
‖ + µB+ Ze8, (II.1.5)

Pφ = Zeψ + ZeR

Ä
v‖Bφ, (II.1.6)

whereBφ denotes the toroidal magnetic field andψ is the poloidal magnetic flux.
General toroidal configurations are analyzed using specific toroidal magnetic flux co-

ordinates (called CASTOR coordinates). The CASTOR flux coordinates are defined by
the radial coordinates=√ψ/ψ1, the poloidal anglẽθ , and the toroidal angleφ. ψ is the
poloidal magnetic flux at a given flux surface andψ1 the total poloidal flux.φ is the usual
toroidal angle but̃θ is chosen such that the magnetic field lines are straight in the(θ̃ , φ)

plane,dφ
dθ = q(s). It is possible to construct a non-orthogonal coordinate system using the

fact that

B = ∇φ ×∇ψ + F∇φ, (II.1.7)

with contra-variant components

B3 = F

R2
, (II.1.8)

B2 = f

J
, (II.1.9)

B3

B2
= q(s). (II.1.10)

J is the Jacobian of the coordinate system(s, θ̃ , φ) and f (s)∇s = ∇ψ (see Appendix 1).
Thus, the particle guiding center equations of motion take the form (see Appendix 2)(

1− 1

Ä
v‖27

)
ṡ = v‖21

1+
v2
‖
Ä

(
21

2+21
127

)+ µ

mÄ
21

3, (II.1.11)(
1− 1

Ä
v‖27

)
˙̃θ = v‖22

1+
v2
‖
Ä

(
22

2+22
127

)+ µ

mÄ
22

3, (II.1.12)(
1− 1

Ä
v‖27

)
φ̇ = v‖23

1+
v2
‖
Ä

(
23

2+23
127

)+ µ

mÄ
23

3, (II.1.13)
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(
1− 1

Ä
v‖27

)
v̇‖ = −µ

m
24+ µv‖

mÄ
(26−2427), (II.1.14)

where the particle constants of motion are

E = 1

2
mv2
‖ + µ

F(s)

b3(s, θ̃ )
, (II.1.15)

Pφ = f (s)2

4ψ1
+ Bv‖b3(s, θ̃ )

Ä
. (II.1.16)

The equations which determine the orbits in axis-symmetric time independent magnetic
field are integrable and can be obtained from these invariants of motion(E, Pφ, µ, σ ). The
trajectories can be determined analytically along the entire orbit, but the time dependence
can only be computed numerically. Eliminatingv‖ from the previous expressions, the orbit
can be expressed in terms of the implicit relation

1

2
m

Ä2

ZeBφ(s, θ)2
(
Pφ − ψ1s2

)2+ µB(s, θ)− E = 0. (II.1.17)

The solution of this equation defines a set of orbits for given(E, Pφ, µ). When this equation
has two different solutions, it is necessary to introduceσ = sign(φ̇) to distinguish them. Each
orbit crosses the horizontal mid-plane, defined as the line(s= 1; θ =π)→ (s= 1; θ = 0),
twice. In order to study the topology of each orbit, the following definitions are introduced
allowing for negatives values

B̃(s) = B(s, 0) for s> 0; B̃(s) = B(s, π) for s< 0, (II.1.18)

B̃φ(s) = Bφ(s, 0) for s> 0; B̃φ(s) = Bφ(s, π) for s< 0, (II.1.19)

leading to

8̃(s, E, Pφ, µ) = 1

2
m

Ä2

ZeB̃φ(s)2
(
Pφ − ψ1s2

)2+ µB̃(s)− E = 0. (II.1.20)

It is assumed that the toroidal field is monotonically decreasing with the major radius
and thatB(s, θ) has only one maximum inθ for a given value ofs. This allows the analysis
of most plasma shapes including elliptic plasmas with high triangularity, but eliminates
“bean-shaped” plasmas or strong elliptic plasmas with d-trapped particles [51].

Equation (II.1.7) wheres∈ [0, 1] and θ ∈ [0, 2π ], θ being a periodic coordinate, de-
scribes the projection of the orbit in the(s, θ) plane; while Eq. (II.1.20) wheres∈ [−1, 1]
describes only the crossings of the orbit through the mid-plane of the torus. This equation
can have zero to four solutions corresponding to zero to two orbits. The solution of the equa-
tion 8̃(s=±1, E, Pφ, µ)= 0 corresponds to orbits of marginally confined particles which
cross the plasma boundary, whereas the solution8̃(s= 0, E, Pφ, µ)= 0 yields the orbits
of particles crossing the magnetic axis. The loci of these orbits in(E, Pφ, µ) coordinates
are given by the solution of the two equations8̃ = 0

∂8̃
∂s
= 0.

(II.1.21)
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TABLE II.1

Topology Regions of the Particle Orbits

Region Orbits Orbit types

I Two Co-passing, encircling the axis
Counter-passing, encircling the axis

II Two Co-passing, encircling the axis
Counter-passing, high field side

III Two Mirror-trapped, encircling the axis
Counter-passing, encircling the axis

IV Two Mirror-trapped, encircling the axis
Counter-passing, high field side

V One Mirror-trapped, encircling the axis
VI One Co-passing, encircling the axis

VII One Mirror-trapped, not encircling the axis
VIII One Co-passing, low field side

IX No orbits —

For a given particle energy the different classes of orbits can be traced in the (Pφ, µ)-plane.
The previous system of equations separates the (Pφ, µ)-plane into three regions correspond-
ing to the existence of no orbits, one orbit, or two orbits. The equation8̃(s= 0, E, Pφ, µ)= 0
separates the (Pφ, µ)-plane into two different regions related to the topology of the orbit
around the axis. By crossing this boundary there is a particle that crosses the magnetic axis
and changes from an orbit encircling the axis to an orbit not encircling the axis or vice
versa. In order to complete the orbit classification the definition of a mirror-trapped particle
is given. The orbit is trapped iḟφ changes sign during the orbit; iḟφ >0, the particle is
co-passing, and iḟφ <0, the particle is counter-passing. The system of equations

{
8̃ = 0

φ̇(s) = 0
(II.1.22)

separates the (Pφ, µ)-plane into two regions corresponding to the existence of trapped
particles. Combining these conditions, nine distinct regions can be considered, as shown in
Table II.1. An orbit is considered to encircle the axis if it crosses the mid-plane ins∈ [0, 1]
and ins∈ [−1, 0]. An orbit is on the high field side if it crosses the mid-plane twice at
s∈ [−1, 0] and on the low field side if it crosses the mid-plane twice ats∈ [0, 1]. The
topological transition of the orbits into different regions are described in Table II.2 [43].

The previous analysis considers an unbounded system. However, with the inclusion of a
plasma boundary the orbits with increasing values ofPφ start leaving the plasma by crossing
the plasma boundary.

The solution of the equatioñ8(s=−1, E, Pφ, µ)= 0 creates region b in the (Pφ, µ)-
plane where an orbit leaves the plasma at the high field of the tokamak. The same happens
for the solutions of the equatioñ8(s= 1, E, Pφ, µ)= 0; the orbit leaves the plasma at the
low field side of the torus thereby creating region c. In region a all possible orbits are inside
the plasma boundaries and in region d all orbits leave the plasma or are completely outside.
Both these boundaries can subdivide regions I–IX into subregions a, b, c by restricting
the number of complete orbits inside the plasma. The exceptions are regions VII and VIII
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TABLE II.2

Topological Transitions of the Particle Orbits

Transition Regions Orbits

1 I→ III Co-passing, get mirror-trapped
2 III→ IV Counter-passing, crosses the axis
3 I→ II Counter-passing, crosses the axis
4 IV→V Counter-passing, disappears
5 III→VII Both orbits turn into a mirror-trapped
6 VII→VIII Mirror-trapped turn into co-passing
7 VI→VIII Co-passing, crosses the axis
8 VI→V Co-passing, get trapped
9 V→VII Mirror-trapped, crosses the axis

10 II→VI Counter-passing, disappears
11 VIII→ IX Co-passing, disappears

with orbits only on the low field side which cannot leave the plasma through the high field
side. In other words, regions VII.c and VIII.c do not exist according to this classification.
Figures II.1–II.2 represent the topology of a particle orbit for a typical JET configuration.
In Fig. II.1 a particle with a low energy is considered. For low energy particles the orbits
are divided into three groups: co-passing, counter-passing, and trapped orbits. In Fig. II.1
each group of particles is represented as a domain in the magnetic moment and toroidal
momentum space. The magnetic momentµ is normalized to the magnetic momentum of a
low energy particle located at the magnetic axis with the velocity along the magnetic field
equal to zero. The toroidal momentum is normalized to the toroidal momentum of a low
energy particle following the flux surface that determines the plasma boundary. In Fig. II.2

FIG. II.1. The topology of standard orbits for a given particle energy as a function of the magnetic moment
and toroidal canonical momentum.
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FIG. II.2. The topology of non-standard orbits for a given particle energy as a function of the magnetic
moment and toroidal canonical momentum.

the topology of the orbits of an alpha particle with 3.5 MeV of energy is represented
for different values of the magnetic moment and the toroidal momentum with the same
normalization used in Fig. II.2. The class of orbits corresponding to each subregion in
(Pφ, µ) space is shown in Table II.1.

III. NUMERICAL PROCEDURE

III.1. Code Organization

Equilibria are constructed using the code HELENA [26], which solves the Grad–Shafranov
equation in the (R,Z)-plane by means of isoparametric bicubic Hermite finite elements. The
linear properties of the toroidal Alfv´en eigenmode spectrum are determined by the normal-
mode code CASTOR (complexAlfv énspectrum intoroidal geometry) [31]. In addition, the
ideal MHD continuous spectrum in advance at each flux surface is solved independently by
the code CSCAS [40].

The MHD eigenmodes obtained can experience fluid damping due to conversion of the
mode energy into strongly damped kinetic Alfv´en waves (radiative damping) [35] and
collisional electron damping [44].

The resonant energy exchange between the linear eigenmode and the different parti-
cle species present in the plasma, including bulk ions and energetic particles, can only be
computed by a gyro-kinetic approach. The gyro-kinetic extension of the CASTOR code
(CASTOR-K code, Diagram III.1a) evaluates numerically the quadratic formδWhot, which
represents the contribution of resonant particles to the stability of the Alfv´en eigenmodes.
It includes the determination of the principal wave damping mechanisms: ion and elec-
tron Landau damping, radiative damping, and collisional electron damping as well as the
evaluation of the instability drive (Diagram III.1b).
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DIAGRAM III.1. (a) The different levels of the gyro-kinetic model together with the corresponding numerical
tools. (b) The wave exchanges energy with the different particle species present in the plasma. The mode becomes
unstable when the energy gained by the wave from the energetic particles exceeds the energy lost to bulk ions and
electrons.

III.2. Ideal and Nonideal MHD

The kinetic Alfvén wave spectrum is computed by the nonideal extension of the CASTOR
code. A small change in the induction equation allows the kinetic effects to be modelled
with accuracy. Using the fact that CASTOR is a resistive MHD code the kinetic terms
can be simply introduced by generalizing the dissipation into a complex parameter. By
modeling the kinetic corrections using a simple complex parameter, a correct result is
obtained in the gap wherek‖ ≈ 1/2q R0.q is the safety factor andR0 is the major radius. This
approximation is sufficient to compute the KTAE spectrum in full toroidal geometry since
the kinetic corrections are valid in the gap region where they are important. Furthermore, the
coupling between TAEs and kinetic Alfv´en waves leads to conversion of energy from TAEs
into kinetic Alfvén waves inside the gap region. Although the propagation of the kinetic
Alfv én wave across the entire plasma cross-section is not accurately described, the energy
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FIG. III.2.1. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repre-
sents a mode with radial mode numberp = 0.

transferred from the TAE to the KAW is accurate. Since these kinetic waves are strongly
damped, the radiative damping can also be described well within this approximation.

First order FLR effects of core ions andE‖ 6= 0 give the corrections to the eigenmode
equation in the boundary layer around the TAE resonance region.

The structure of this equation is analogous to the structure of the resistive MHD equations
in the limit of |c2ηk2

r /4πω|¿1 with a general complex parameter ˜η defined by

η̃ = 4πωρ2
sδ(νe)+ i 4πω

(
3

4
+ Te

Ti

)
ρ2

s . (II.1.23)

Thus, CASTOR provides the MHD spectrum including the TAE and KTAE field per-
turbations needed in CASTOR-K. Using this approximation the KTAE spectrum in full
toroidal geometry is computed.

The structure of the KTAE modes, where full toroidal effects are taken into account, is
shown in Figs. III.2.1–III.2.4. The calculations are performed for a JET-shaped equilibrium
with R0= 3m, the safety factor varying fromq0≈ 1 toqedge≈ 3 and the normalized complex
parameter ˜η/(µ0R0vA)= 10−7+ 10−6i . vA denotes the Alfv´en velocity on the magnetic
axis. The inner structure of these modes is similar to the structure of the modes computed
using the simplified analytic models, but the global structure of the full toroidal modes is
more complex as can be seen in Figs. III.2.1–III.2.4.

III.3. The CASTOR-K Code

The influence of energetic particles on the stability of Alfv´en waves is evaluated. Instabil-
ities exist if the energy transferred from energetic particles into the mode via inverse Landau
damping exceeds the energy dissipated into the bulk ions and electrons. The CASTOR-K
code computes perturbatively the energy exchange between a given MHD eigenfunction
and a distribution of energetic particles (see Diagram III.3). The energy transferred can be
expressed by the inner product between the perturbed Lagrangian and the perturbed distri-
bution function. This implies a six-dimensional integration over the phase-space based on
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FIG. III.2.2. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repre-
sents a mode with radial mode numberp = 1.

the coordinatesE, Pφ, µ, τ, α, andφ, which is related to the usual coordinates(Ex, Ev) by
the Jacobian

d3x d3v = 1

m2Ze
dE dPφ dµ dτ dα dφ. (III.3.1)

The phase-space integration is performed using both numerical and analytical procedures.
The gyro-averaged description of the motion of the guiding center averages the gyro-angle
contribution in the integration ∫

L(1)dα = 2πL(1). (III.3.2)

FIG. III.2.3. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repre-
sents a mode with radial mode numberp = 2.
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FIG. III.2.4. The radial displacement of a KTAE computed by the CASTOR code. The eigenfunction repre-
sents a mode with radial mode numberp = 3.

Exploiting the periodicity of the unperturbed orbits in the poloidal coordinate, the perturbed
Lagrangian is decomposed in Fourier harmonicsYp and the poloidal angle integration is
performed using Fourier transforms. Only periodic perturbations in the toroidal direction
are considered, thus the integration over the toroidal angle is performed analytically∫

e−inφL(1)einφdφ = 2πL(1). (III.3.3)

In the analysis of the energy exchange between the particle and the wave only the resonant
part of the integral is required. The energy integration is performed analytically over the
pole contributions,

Im

[ ∫
dẼ dP̃φ dµ̃

0(Ẽ)

]
=
∫

dP̃φ dµ̃
2π

|∂0/∂Ẽ| (0(Ẽ)=0)

. (III.3.4)

The remaining two integrations over(Pφ, µ) are performed numerically using a specific
algorithm developed for this problem. The scheme applied to the phase-space integration
is summarized in Table III.3.1.

DIAGRAM III.3. The three main stages of the calculation performed by the CASTOR-K code.
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TABLE III.3.1

Scheme Applied to the Phase-Space Integration

The gyro-angle α Analytical Average procedure
The poloidal angle θ Numerical Fourier transform
The toroidal angle φ Analytical Fourier decomposition
The energy E Analytical Integration over the poles
The magnetic moment µ Numerical Binary search algorithm
The toroidal canonical momentum Pφ Numerical Binary search algorithm

The two-dimensional integration must be performed for several values ofp̃ andσ ,∫
dP̃φ dµ̃τ̃b(ω − nω∗)

∂F
∂ Ẽ

|Yp̃|2
|∂0/∂ Ẽ| . (III.3.5)

The computation of the integrand involves considerable numerical effort. TheYp̃ coefficients
require the integration of the resonant unperturbed orbits and the Fourier transforms of the
perturbed Lagrangian. The selection of the resonant orbits is computed numerically using
a root finding procedure; the contribution from each pole is evaluated numerically in the
form of ∂0/∂ Ẽ. Since the computational effort of each contribution to the total(Pφ, µ)
integration is significant, the numerical procedure should make a good selection of the
points in which the integrand is evaluated.

III.4. Integration of the Particle Orbits

The trajectory of a particle can be expressed analytically as a function of the invariants of
motion and of the equilibrium quantities. The time dependence of the particle trajectory must
be integrated numerically. For this purpose an explicit integration procedure is developed.
The accuracy of the integration scheme is such that the orbit trajectory is reproduced up
to a given tolerance. The procedure automatically adjusts the time step according to the
conservation of the invariants, namely the energyE and the toroidal canonical momentum
Pφ . The conservation of the magnetic moment is always guaranteed by the gyro-averaged
equations of motion. A fourth-order Runge–Kutta algorithm [1] is suitable for this problem
with a good compromise between accuracy and efficiency. Using this procedure an accuracy
of εE ≈ 10−10 can be achieved with less than 100 time steps per orbit for most orbits. In
order to obtain the orbit trajectory up to machine precisionεE ≈ 10−15 (double precision),
around 1000 time steps per orbit are required. Unfortunately, this is not true for all orbits.
The orbits very close to the bifurcation where a trapped orbit becomes a passing orbit are
called pinch orbits. These orbits are very difficult to compute numerically. For this class
of orbits the bounce time diverges and those orbits cannot be computed accurately. Since
in most applications the contribution of particles at the trapped-passing boundary is not
important, these particles are neglected in the calculations. Another class of particles that
can create problems during the integrations are the particles that cross the magnetic axis.
Polar coordinates are very efficient in calculating most of the trajectories, but in the plasma
centers = 0 the equation of motion becomes singular, i.e.,θ̇→∞. The sharp transition
from θ = π to θ = −π of the polar coordinate when the orbit crosses the axis requires
a very small time step to resolve it. The automatic step adjusting procedure can solve the
problem but requires an increasing number of time steps as the particles get closer and



116 BORBA AND KERNER

closer to the magnetic axis, thereby making this procedure very inefficient. The solution
is to adopt a double coordinate integration procedure using both poloidal and Cartesian
coordinates. By solving 6 equations instead of the usual 4,

ṡ = Fs(s, θ, v‖)
θ̇ = Fθ (s, θ, v‖)
φ̇ = Fφ(s, θ, v‖)
v̇‖ = Fv(s, θ, v‖)

Ẋ = ṡcosθ − sθ̇ sinθ

Ẏ = ṡsinθ + sθ̇ cosθ

(III.4.1)

the coordinate system is changed into a Cartesian coordinate system when a particle gets
close to the magnetic axis. Therefore, without any significant increase in the computational
overhead the orbits close to the magnetic axis can be computed accurately. The overall
accuracy can be seen in Fig. III.4.1 where the error associated with the conservation of
the invariants is displayed as a function of the number of time steps per orbit used in the
calculation and for different numbers of orbits computed. The larger the number of orbits
is, the larger the associated error becomes. By introducing a fourth-order method the error
decreases with the fourth power of the time step. This should be true for half an orbit. If an
entire orbit is computed the error scales asε∝ (1t)−4.33 due to the up–down symmetry of
the orbit as shown in Table III.4.1. For a larger number of orbits the error scaling is also
given by Table III.4.1.

For an asymptotically large number of orbits the error should scale asε ∝ (1t)−5 due
to the periodicity of the orbits. Using up–down symmetric plasmas only half of the orbits
need to be computed.

FIG. III.4.1. Error associated with the conservation of the invariants(E, Pφ) as a function of the number of
time steps per orbit.
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TABLE III.4.1

Error in the Orbit Integrations

Number orbits Integration error

1 ε ∝ (1t)−4.33

10 ε ∝ (1t)−4.77

50 ε ∝ (1t)−4.94

III.5. Numerical Integration ofδWhot in the Subspace Pφ, µ

The integration over the(Pφ, µ) coordinates is performed using a two-dimensional adap-
tive scheme. The procedure works in two phases. At first a rectangular mesh is constructed
evaluating the function to be integrated at each point. Thus, a first estimate of the integral
is obtained. In the second step, a refinement criterion selects the area where accumulation
points are required for improvement in the accuracy of the integration. This procedure is
repeated until a predefined accuracy of the integration is achieved. This method is useful
in cases where the integral evaluations are very demanding in terms of computing time
and where it pays off to spend some time selecting the points at which the integrand is to
be evaluated. The mesh accumulation is concentrated in areas where the function is less
well behaved and, hence, the contribution to the overall integration is more important. The
method is a two-dimensional equivalent of the Simpson rule [1], where the evaluated points
are fitted using cubic polynomials. The deviation from the bicubic interpolating function
is a measure of the error associated with the integration of that particular sub-element.
This deviation function is used to decide which divisions require further subdivisions to
achieve a given accuracy in the integration. Each division requires nine evaluations of the
integrand and each subdivision requires an additional five evaluations of the integrand. The
number of subdivisions required depends on the behavior of the integrand and the success
of the method depends on the choice of the initial rectangular mesh. This method has the
advantage of giving the result after each subdivision and of providing an estimate at each
step of the calculation. Convergence studies show an error estimate scaling consistent with
a second order method in two dimensions

ε = (points)−1. (III.5.1)

In Figs. III.5.1–III.5.3 the steps of the numerical integration procedure are presented. The
results of the test case are shown in Fig. III.6.1 where the corresponding value ofvα

vA
= 1

is used with the parameters of Table III.6.1. The initial rectangular mesh is represented in
Fig. III.5.1. This regular mesh enables a crude estimate of the final result but, also, forms
a basis for the algorithm which calculates the optimum mesh accumulation, as shown in
Fig. III.5.4. After several iterations, as shown in Fig. III.5.2, the mesh is accumulated in an
area corresponding to the largest values assumed by the integrand as seen in Fig. III.5.5.
A further refinement of the mesh is shown in Fig. III.5.3 and the final result is displayed
in Fig. III.5.6. This simple test case illustrates the numerical procedure, but typical toka-
mak applications involve more complex functions which require a finer mesh and a more
elaborate initial mesh to guarantee that all the details of the integrand can be resolved.

In Fig. III.5.7 the error associated with the numerical integration as a function of the
number of steps is represented. Logarithmic scales are used, and a linear fit is displayed
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FIG. III.5.1. Map of the integration grid with 25 points without any mesh accumulation.

in order to represent the asymptotic behavior. In Fig. III.5.8 the error associated with the
numerical integration as a function of the number of points is represented. One of the key
issues while implementing such a method is to guarantee that the same point is not evaluated
twice, since each evaluation is costly in terms of computing time. This problem is solved
by storing the integrand in a vector and using it whenever required. In order to optimize
the storage as well as the retrieval of the information, a reversed binary index of all the
rational points in a square is introduced. Hence, the point{0.0, 0.0} is represented by the
pair(1, 1), {0.0, 1.0}→ (1, 0), {1.0, 0.0}→ (0, 1) and{1.0, 1.0}→ (0, 0). Successive sub-
division of the interval yields the coordinates for{0.5, 0.0}→ (2, 0), {0.25, 0.0}→ (3, 0),
{0.75, 0.0}→ (7, 0), etc. This enables a binary search for the information as demonstrated
in Fig. III.5.9.

FIG. III.5.2. Map of the integration grid with 185 points and with mesh accumulation.
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FIG. III.5.3. Map of the integration grid with 345 points and with mesh accumulation.

III.6. Benchmark Tests

The accuracy of the CASTOR-K code is assessed by comparison with analytic theory
in the small orbit width limit and by a benchmark test with linear [20] and non-linear
simulations [5]. For comparison with the local analytic expression, valid in the small orbit
and large aspect ratio limit, a very large aspect ratio is chosen. In order to ensure that

FIG. III.5.4. Surface plot of the integrand evaluated at the 25 grid points without any mesh accumulation as
shown in Fig. III.5.1.
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FIG. III.5.5. Surface plot of the integrand evaluated at 65 grid points using mesh accumulation.

the small orbit limit can be applied an extremely large value for the magnetic field is
chosen. In addition, a very localized eigenfunction is used in the calculation where the radial
displacement is set to zeroξr = 0 in agreement with the conditionξr ¿ ξθ . An overview of
these parameters is given in Table III.6.1.

FIG. III.5.6. Surface plot of the integrand evaluated at 425 grid points using mesh accumulation.
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FIG. III.5.7. Error associated with the two-dimensional integration as a function of the number of evaluations
represented in a logarithmic scale.

FIG. III.5.8. Error associated with the two-dimensional integration as a function of the number of iterations
represented in a logarithmic scale.
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FIG. III.5.9. Map of the initial distribution of the integrand evaluations and their binary coordinates.

Using these parameters the known results obtained in the small orbit limit and large aspect
ratio limit are recovered. Figure III.6.1 compares the results obtained from analytic theory
[3] with those calculated by the CASTOR-K code. This diagram shows a good numerical
convergence, where an accuracy of 1% can be achieved with around 1000 evaluations of the
integrand. This calculation will take around 10–20 minutes on a desktop personal computer
based on a Intel pentium microprocessor running at 400 MHz (SPECint95 of 15.0 and
CPUmark32 of 1000), under the Linux operating system. Realistic tokamak simulations
can take up to a few hours of CPU time depending on the complexity of the orbits, the
eigenfunctions, and on the accuracy required.

In the comparison with the initial value simulations non-linear code (FAC) a very unstable
mode is considered. This allows a sufficiently accurate determination of the growth rate with
a simulation of a few wave periods in the non-linear initial value calculation. It is important
that the growth rate be sufficiently smaller than both the particle bounce frequency and the

TABLE III.6.1

Parameters for the Comparison with Analytic Theory

Inverse aspect ratio of the torus 1
ε
= 1× 103

Magnetic field on axis B0 = 1× 109 T
Major radius of the torus R0 = 8 m
Bulk ion density nI = 1.3593× 1036 m−3

Total poloidal magnetic flux ψ̂ p = .4276× 10−6

Total poloidal magnetic flux ψp = 2.7367× 104 Tm2

Mode angular frequency ω= 7.08× 105 rads−1

Toroidal mode number n = −3
Fast ion temperature (MAXWELLIAN) Tα = 1.7500× 103 keV
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FIG. III.6.1. Comparison of the CASTOR-K code with the results obtained from analytic theory in the small
inverse aspect ratio limit.

wave frequency. This is achieved with a high-n TAE. The poloidal mode structure is also
simplified by retaining only the dominant poloidal mode componentsm̃= 8, 9. In tokamak
simulations, all relevant poloidal components are included as shown in Figs. III.2.3–III.2.4.

In Fig. III.6.2 the comparison of the CASTOR-K code with the non-linear simulations
performed by the FAC code is displayed [5]. The corresponding parameters are listed in

FIG. III.6.2. Comparison of the CASTOR-K code with the non-linear code FAC.
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TABLE III.6.2

Parameters for the Comparison with the Non-linear Simulations

Aspect ratio of the torus ε = 0.375
Magnetic field on axis B0 = 6 T
Major radius of the torus R0 = 8 m
Bulk ion density nI = 1.0× 1020 m−3

Mode angular frequency ω = 7.000× 105 rads−1

Toroidal mode number n = −10
Poloidal mode number m̃= 8, 9

the Table III.6.2. In this figure the results obtained within the small orbits version of the
CASTOR-K code and in the large orbits version of the CASTOR-K code are plotted together
with the results obtained by the FAC code. The agreement is excellent within a few percent
except for small frequencies where the different specifications of the distribution functions
in the CASTOR-K and FAC is important. The small difference between the results from the
small orbit’s code and the large orbit’s code is due to the fact that the orbit’s size is small
compared with the mode width for the parameters used in this simulation.

In addition, a comparison between the CASTOR-K code and the NOVA-K code [20, 52]
developed at the Princeton Plasma Physics Laboratory is performed in the small orbit
limit. The main parameters used in the comparison are shown in Table III.6.3, and the
results in Fig. III.6.3. It is evident that the agreement with different numerical methods is
good.

III.7. The Influence of Trapped and Passing Particles

In the small orbit width limit the interaction of a TAE with both passing and trapped
particles is calculated for an equilibrium with circular cross-section and inverse aspect ratio
ε= 1

3. A Maxwellian distribution function is used where the thermal velocity coincides
with the Alfvén velocity. The TAE componentn=−3, m̃= 3 is in resonance with co-
passing particles withv‖ =−VA; and then=−3, m̃= 4 component is in resonance with
counter-passing particles withv‖ =VA. For the chosen thermal particle velocity these two
contributions are the most important ones, accounting for more than 70% of the total energy
exchange. The TAE also interacts with trapped particles via the first and second harmonic of
the bounce resonance. In Figs. III.7a–III.7d the different classes of particles are represented,

TABLE III.6.3

Parameters for the Comparison with the NOVA-K Model

Aspect ratio of the torus ε = 0.300
Magnetic field on axis B0 = 3 T
Major radius of the torus R0 = 3 m
Bulk ion density nI = 5× 1019 m−3

Mode angular frequency ω = 6.000× 105 rads−1

Toroidal mode number n = −2
Poloidal mode number m̃= 3, 4
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FIG. III.6.3. Comparison of the CASTOR-K with the NOVA-K code.

which interact with the TAE. The contours show the areas in the phase-space where the
energy exchange is more pronounced as a function of the toroidal momentum and magnetic
moment. The contribution of each resonance to the energy exchange between the particles
and the TAE is summarized in Table III.7.1.

In each calculation it is crucial to ensure that a sufficient number of bounce harmonics
are kept to guarantee convergence. The number of bounce harmonics required depends on
the mode structure and on the nature of the orbits. In this case the nine bounce harmonics
shown in Table III.7.1 are sufficient since the contribution of the bounce harmonics with
p> 5 and p<−4 can be neglected. In the case of large orbits and large toroidal mode
numbers, the numbers of bounce harmonics have to be increased considerably.

TABLE III.7.1

Contribution of Different Classes of Particles to the Energy Exchange

p = −3 34.5% Passing particles v‖ = VA

p = −2 3.2% Passing particles v‖ = − VA
3

p = −1 ≈0% — —
p = 0 ≈0% Trapped particles Precession drift resonance
p = 1 8.1% Trapped particles First bounce resonance
p = 2 7.6% Trapped particles Second bounce resonance
p = 3 1.6% Trapped particles Third bounce resonance
p = 4 42.7% Passing particles v‖ = −VA

p = 5 1.6% Passing particles v‖ = VA
3
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FIG. III.7. (a) Interaction of a TAE withn = 3, m̃ = 3, 4, with an ion Maxwellian distribution via the first
trapped bounce resonance. (b) Interaction of a TAE withn = 3, m̃ = 3, 4, with an ion Maxwellian distribution
via the second trapped bounce resonance. (c) Interaction of a TAE withn = 3, m̃= 3, 4, with an ion Maxwellian
distribution via the co-passingv‖ = VA bounce resonance. (d) Interaction of a TAE withn = 3, m̃= 3, 4, with an
ion Maxwellian distribution via the counter-passingv‖ = −VA bounce resonance.

III.8. The Influence of Large Orbits

In the case of large orbits, the particles drift away from the flux surfaces and the in-
teraction with a localized mode is significantly reduced. In Figs. III.8a–III.8f the poloidal
cross-section of the energy density of a field perturbation is displayed interacting with a
Maxwellian distribution of particles for different values of the Larmor radius. The figures
also represent the orbit of the particle that exchanges the most energy with the wave. For
small values of the Larmor radius, Figs. III.8a–III.8b, the orbits are confined to a flux surface
and they exchange energy with the mode very effectively. With increasing Larmor radius,
Figs. III.8c–III.8e, the orbits experience excursions away from the flux surfaces decreasing
the interaction with the mode. In this regime the precession drift frequency is comparable
with the transit and bounce frequencies.



FIG. III.8. (a) ρ
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a
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teraction of a MHD wave harmonicn = 3, m̃ = 3, 4, with particle distributions having different orbit widths
represented byρth/a.
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Finite orbit effects start to reduce the energy exchange between the wave and the particle
significantly when the mode width is comparable with the orbit banana width as shown
in Fig. III.8d. By further increasing the Larmor radius the trapped banana orbits become
non-standard potato orbits as shown in Fig. III.8e. In this case the orbits only cross the per-
turbation during a short period of time and the energy exchange is very small. This effect is
more important for high energy particles close to the magnetic axis. The orbits can be made
larger by decreasing the field or the plasma current. The energy exchange between the wave
and the particle distribution with different Larmor radii is summarized in Fig. III.8g. The
energy exchange between the particles and the wave decreases with increasing normalized
Larmor radius of the energetic particles [49]. In Fig. III.8g the energy exchange is repre-
sented by the damping of the wave in the presence of an isotropic distribution of particles
without spatial gradients.

IV. CONCLUSIONS

The hybrid gyro-kinetic MHD model described in this paper provides a detailed de-
scription of the interaction of energetic ions with global plasma waves including realistic
geometry together with the finite orbit widths effects for large non-standard orbits. A gen-
eral self-consistent formulation is derived and the appropriate numerical algorithms for the
large scale numerical evaluation are developed and tested. The perturbative approach is used
to study the influence of energetic ions on the stability of Alfv´en eigenmodes. The ideal
MHD model is extended in order to include the effect of a perturbed parallel electric field
and of the finite Larmor radius both being relevant for high temperature plasmas. Thus, the
spectrum KTAEs can be evaluated in realistic tokamak geometry.

The model enables the stability analysis of different scenarios including the tritium
experiments at JET, where a large fraction of energetic particles is present, as well as the
future fusion reactor experiments (ITER) with a significant fraction of alpha particles. The
stability of small wave length Alfv´en eigenmodes, relevant for the alpha particle confinement
in a fusion reactor, can be analyzed using this method. The numerical procedure developed is
appropriate to resolve the interaction between short wave length perturbations and energetic
particles with complex orbit shapes.

The numerical evaluation of the power transferδWhot requires two main algorithms,
namely for the integration of the particle orbits and for the phase-space integration. The
orbit following algorithm uses 6 variables in order to handle the geometric singularity of the
poloidal coordinates. Sufficient accuracy is achieved using around 100 Runga–Kutta fourth
order steps per orbit. The scheme for the evaluation of the phase-space integration works
accurately and efficiently. Convergence studies yield a scaling of the error consistent with
a second order method in two dimensions. In the small orbit and large aspect ratio limit the
results calculated by the CASTOR-K code agree well with those obtained from analytic
theory [3]. Good numerical convergence is established, where an accuracy of 1% can be
achieved with around 1000 evaluations of the integrand. In addition, the accuracy of the
CASTOR-K code package also is assessed by benchmark tests with the FAC code and the
NOVA-K code. These tests confirm in detail that the developed algorithms are robust and
accurate. Furthermore, convergence studies show the new code can be applied to physical
problems with sufficient efficiency.

The CASTOR-K code has been applied for detailed analysis of JET discharges during
the DTE1 campaign [32, 16].
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APPENDIX

A.1. Particle Equations of Motion in CASTOR Curvilinear Coordinates

The covariant and contra-variant components of CASTOR coordinates are

a1 = ∇s, (A.1.1)

a1 = J∇ θ̃ ×∇φ, (A.1.2)

a2 = ∇ θ̃ , (A.1.3)

a2 = J∇φ ×∇s, (A.1.4)

a3 = ∇φ, (A.1.5)

a3 = J∇s×∇ θ̃ . (A.1.6)

J is the Jacobian of the coordinate system(s, θ̃ , φ) and f (s)∇s= ∇ψ . The metric coeffi-
cients are defined as

g11 = |∇s|2, (A.1.7)

g11 = J2

R2
|∇ θ̃ |2, (A.1.8)

g12 = ∇s · ∇ θ̃ , (A.1.9)

g12 = − J2

R2
∇s · ∇ θ̃ , (A.1.10)

g22 = |∇ θ̃ |2, (A.1.11)

g22 = J2

R2
|∇s|2, (A.1.12)

g23 = 0, (A.1.13)

g23 = 0, (A.1.14)

g33 = |∇φ|2 = 1

R2
, (A.1.15)

g33 = R2, (A.1.16)

whereR(s, θ̃ ) is the distance from the toroidal axis.
The differential operators required in the unperturbed orbit integrations are

Ekc = (Eb · ∇)Eb, (A.1.17)

E21 = Eb, (A.1.18)

E23 = Eb×∇B, (A.1.19)

E22 = Eb× Ekc, (A.1.20)

24 = Eb · ∇B, (A.1.21)

25 = Eb · Ekc = 0, (A.1.22)

26 = Ekc · (Eb×∇B), (A.1.23)

27 = Eb · (∇ × Eb), (A.1.24)
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where the contra-variant components ofEkc and Ew are

k1
c = −

g33(−∂b1/∂θ + ∂b2/∂s)b2− (g12(∂b3/∂θ)− g22(∂b3/∂s))b3

J(s, θ̃ )2
, (A.1.25)

k2
c =

(g33(−(∂b1/∂θ)+ ∂b2/∂s)b1)− (g11(∂b3/∂θ)− g12(∂b3/∂s))b3

J(s, θ̃ )2
, (A.1.26)

k3
c = −

(g12(∂b3/∂θ)− g22(∂b3/∂s))b1− (g11(∂b3/∂θ)− g12(∂b3/∂s))b2

J(s, θ̃ )2
, (A.1.27)

w1 = − (∂B/∂θ̃)b3

J(s, θ̃ )
, (A.1.28)

w2 = (∂B/∂s)b3

J(s, θ̃ )
, (A.1.29)

w3 = (∂B/∂θ̃)b1− (∂B/∂s)b2

J(s, θ̃ )
, (A.1.30)

where Ew is defined as

Ew = Eb×∇B. (A.1.31)

In the CASTOR curvilinear flux coordinates these operators take the form

21
1 = g11b1+ g12b2 = b1 = 0, (A.1.32)

22
1 = g12b1+ g22b2 = b2 = f

J B
, (A.1.33)

23
1 = g33b3, (A.1.34)

21
2 =

g33k3
cb2− g12k1

cb3− g22k2
cb3

J(s, θ̃ )
, (A.1.35)

22
2 =
−g33k3

cb1+ g11k1
cb3+ g12k2

cb3

J(s, θ̃ )
, (A.1.36)

23
2 =

g12k1
cb1+ g22k2

cb1− g11k1
cb2− g12k2

cb2

J(s, θ̃ )
, (A.1.37)

21
3 = w1, (A.1.38)

22
3 = w2, (A.1.39)

23
3 = w3, (A.1.40)

24 =
∂B
∂θ̃

Fg33

q(s)B
, (A.1.41)

26 = g11k
1
cw

1+ g12k
2
cw

1+ g12k
1
cw

2+ g22k
2
cw

2+ g33k
3
cw

3, (A.1.42)

27 = (∂b3/∂θ)b1− (∂b3/∂s)b2+ (−∂b1/∂θ + ∂b2/∂s)b3

J(s, θ̃ )
. (A.1.43)
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A.2. Discretization of the Orbit Integrals

The implementation of the orbit integrals requires computation of the seven2 factors
present in the particle equations of motion numerically,(

1− 1

Ä
v‖27

)
ṡ = v‖21

1+
v2
‖
Ä

(
21

2+21
127

)+ µ

mÄ
21

3, (A.2.1)(
1− 1

Ä
v‖27

)
˙̃θ = v‖22

1+
v2
‖
Ä

(
22

2+22
127

)+ µ

mÄ
22

3, (A.2.2)(
1− 1

Ä
v‖27

)
φ̇ = v‖23

1+
v2
‖
Ä

(
23

2+23
127

)+ µ

mÄ
23

3, (A.2.3)(
1− 1

Ä
v‖27

)
v̇‖ = −µ

m
24+ µv‖

mÄ
(26−2427). (A.2.4)

These equilibrium quantities2 are functions of s (radius) and̃θ (generalized poloidal
angle). An efficient two dimensional interpolation scheme is given by applying cubic splines
in s and Fourier expansion with respect to the angleθ̃ . This interpolation must account for
accurate representation of the equilibrium. In addition, all quantities must be consistent
up to machine accuracy in order to ensure convergence of the orbit following procedure.
Given an equilibrium reconstructed with the HELENA code, the splined equilibrium must
be sufficiently close to the original magnetic configuration and, furthermore, operators like
∇ × Eb, ∇B, etc., must be represented accurate up to machine precision. The quantities
required in the equations of motion are expressed in terms off , F , q, b1, b2, andb3 and
their first derivatives ins, θ̃ . f , F , andq only depend ons, while b1, b2, andb3 depend on
s andθ̃ . The radial dependence is interpolated using cubic splines defined as

GI (s, θ̃ ) =
∑

j

(
aYn, j + bYn+1, j + (a3− a)Y′′n, j + (b3− b)Y′′n+1, j

) h2

6
sin(− j θ̃ ), (A.2.5)

GP(s, θ̃ ) =
∑

j

(
aYn, j + bYn+1, j + (a3− a)Y′′n, j + (b3− b)Y′′n+1, j

) h2

6
cos(− j θ̃ ), (A.2.6)

where

h = Xn+1− Xn, (A.2.7)

a = Xn+1− x

h
, (A.2.8)

b = x − Xn

h
. (A.2.9)

Each array of splines contains the value of the function at each node and the corresponding
second derivative ins. The Fourier decomposition uses the fact that all functions are either
even or odd iñθ . Hence, the corresponding derivatives are represented as

∂GI (s, θ̃ )
∂s

=
∑

j

(
daYn, j + dbYn+1, j + (3a2− 1)daY′′n, j

+ (3b2− 1)dbY′′n+1, j

)h2

6
(sin(− j θ̃ )), (A.2.10)
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∂GP(s, θ̃ )
∂s

=
∑

j

(
daYn, j + dbYn+1, j + (3a2− 1)daY′′n, j

+ (3b2− 1)dbY′′n+1, j

)h2

6
(cos(− j θ̃ )), (A.2.11)

∂GI (s, θ̃ )
∂θ

=
∑

j

(
aYn, j + bYn+1, j + (a3− a)Y′′n, j

+ (b3− b)Y′′n+1, j

)h2

6
(− j cos(− j θ̃ )), (A.2.12)

∂GP(s, θ̃ )
∂θ

=
∑

j

(
aYn, j + bYn+1, j + (a3− a)Y′′n, j

+ (b3− b)Y′′n+1, j

)h2

6
( j sin(− j θ̃ )), (A.2.13)

whereda= − 1
h anddb= 1

h .
It is easy to see thatb1, ∂b1/∂s, ∂b2/∂θ̃ , and∂b3/∂θ̃ are odd functions iñθ and∂b1/∂θ̃ ,

∂b2/∂s, ∂b3/∂s, b2, andb3 are even functions iñθ . DefiningB and its derivatives

B = F

b3
, (A.2.14)

∂B
∂s
= (∂ F/∂s)b3− F(∂b3/∂s)

b2
3

, (A.2.15)

∂B
∂θ̃
= − F(∂b3/∂θ̃)

b2
3

, (A.2.16)

the2 terms can now be represented using splines. The following expressions represent the
metric coefficients in the new representation

g11 = f 2q + F2qb2
1 + BFb2

1b2

BFb2
, (A.2.17)

g12 = b1(Fq + Bb2)

B
, (A.2.18)

g22 = Fqb2

B
+ b2

2, (A.2.19)

g33 = F(Fq + Bb2)

B2q
, (A.2.20)

g11 = BFb2

f 2q
, (A.2.21)

g12 = −BFb1

f 2q
, (A.2.22)

g22 = BFb2
1

f 2qb2
+ B

Fqb2+ Bb2
2

, (A.2.23)

g33 = B2q

F2q + BFb2
. (A.2.24)
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Finally the2 terms are

21
1 = 0, (A.2.25)

22
1 =

B

Fq + Bb2
, (A.2.26)

23
1 =

B2qb3

F2q + BFb2
, (A.2.27)

21
2 = −

B3(∂b3/∂θ̃)
(
Fb2+ Bqb2

3

)
f F(Fq + Bb2)

2 , (A.2.28)

22
2 =

B3
((
∂b3/∂θ̃)Fb1− (∂b1/∂θ̃)Fb3+ (∂b2/∂s)Fb3+ B(∂b3/∂s)qb2

3

)
f F(Fq + Bb2)

2 ,

(A.2.29)

23
2 =

B3((∂b1/∂θ̃)Fb2− (∂b2/∂s)Fb2+ B(∂b3/∂θ̃)qb1b3− B(∂b3/∂s)qb2b3)

f F(Fq + Bb2)
2 ,

(A.2.30)

21
3 = −

B2(∂B/∂θ̃)b3

f (Fq + Bb2)
, (A.2.31)

22
3 =

B2(∂B/∂s)b3

f (Fq + Bb2)
, (A.2.32)

23
3 =

B2((∂B/∂θ̃)b1− (∂B/∂s)b2)

f (Fq + Bb2)
, (A.2.33)

24 = B(∂B/∂θ̃)

Fq + Bb2
, (A.2.34)

26 = B3(−((∂B/∂θ̃)(∂b3/∂θ̃)Fb1)+ (∂B/∂s)(∂b3/∂θ̃)Fb2 + (∂B/∂θ̃)(∂b1/∂θ̃)Fb3 − (∂B/∂θ̃)(∂b2/∂s)Fb3)

f F(Fq + Bb2)
2
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(
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f F(Fq + Bb2)
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27 = B2((∂b3/∂θ̃)b1− (∂b3/∂s)b2− (∂b1/∂θ̃)b3+ (∂b2/∂s)b3)

f (Fq + Bb2)
. (A.2.36)

A.3. Accuracy of the Magnetic Field Representation

It is essential that the orbit integrals are performed sufficiently accurately; here the ac-
curacy depends crucially on the representation of the magnetic field. The radial coordinate
dependence is represented by cubic finite elements, and the dependence on the poloidal
coordinate by a Fourier decomposition. The choice made for the representation of the func-
tionsb1, b2, b3 guarantees that the field is consistent, i.e.,∇ · EB= 0 (up to machine accuracy
er ≈ 10−15) and that all the differential operators required in the orbit integrals are repre-
sented up to machine precision. This fact is confirmed by the level of accuracy by which
the invariants of motion are conserved during the orbit integrations (III.4). Independent of
the number of radial nodes used, and of the number of Fourier modes, the particle orbits
are well described by the field representation. Depending on the equilibrium configuration
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FIG. A.3. (a) Representation of22
1 using 3, 5, and 7 poloidal harmonics. (b) Representation of23

1 using 3,
5, and 7 poloidal harmonics. (c) Representation of21

2 using 3, 5, and 7 poloidal harmonics. (d) Representation
of 22

2 using 3, 5, and 7 poloidal harmonics. (e) Representation of23
2 using 3, 5, and 7 poloidal harmonics.

(f) Representation of23
3 using 3, 5, and 7 poloidal harmonics. (g) Representation of26 using 3, 5, and 7 poloidal

harmonics. (h) Representation of27 using 3, 5, and 7 poloidal harmonics.

the resolution required in the field representation can change; simple circular cross-section
equilibria require only a few poloidal harmonics, while strongly shaped triangular plasmas
require more than 5 Fourier components. For plasmas, where the plasma boundary is de-
termined by a separatrix, the coordinates used in CASTOR cannot represent the last closed
flux surfaces accurately. The functions that represent the magnetic field near the separatrix
have a strong dependence inθ̃ close to the X-point and require a large number of Fourier
harmonics for accurate representation. The analysis of the excitation of global modes by
energetic ions does not require the inclusion of kinetic effects at the plasma boundary, since
the plasma edge is dominated by low temperatures and the density of energetic ions is very
small. For this reason a less accurate representation of the plasma boundary does not consti-
tute a problem. The number of radial cubic elements and poloidal Fourier components used
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FIG. A.3—Continued

depend on the accuracy required in the representation of the equilibrium. As 1% accuracy
is sufficient in most applications, 41 radial grid points and 7 Fourier components are used.

For a JET equilibrium the functions which are more difficult to represent are26 and
27 as defined in Appendix 2. The functions21

1, 22
1, 23

1, 21
2, 22

2, 23
2, 23

3, and24 can be
represented accurately with 5 poloidal harmonics in the regions∈ [0, 0.8], while26 and
27 require 7 poloidal harmonics. The results shown in Figs. A.3a–A.3f give evidence of
the high accuracy achieved with only 5 harmonics for the quantities21

1, 22
1, 23

1, 21
2, 22

2,
23

2,23
3, and24; only the quantities26 and27 require 7 poloidal harmonics for the same

level of accuracy as shown in Figs. A.3g–A.3h.
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